Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.

Identifieur interne : 002795 ( Main/Exploration ); précédent : 002794; suivant : 002796

Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.

Auteurs : Hongjia Li [États-Unis] ; Xiadi Gao ; Jaclyn D. Demartini ; Rajeev Kumar ; Charles E. Wyman

Source :

RBID : pubmed:23637060

Descripteurs français

English descriptors

Abstract

High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1 wt% sodium hydroxide at 120°C for different reaction times. Following pretreatment, an H₂Cit⁻/HCit²⁻ buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72 h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance.

DOI: 10.1002/bit.24951
PubMed: 23637060


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.</title>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California, 92521; Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California, 92521; Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23637060</idno>
<idno type="pmid">23637060</idno>
<idno type="doi">10.1002/bit.24951</idno>
<idno type="wicri:Area/Main/Corpus">002616</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002616</idno>
<idno type="wicri:Area/Main/Curation">002616</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002616</idno>
<idno type="wicri:Area/Main/Exploration">002616</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.</title>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California, 92521; Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California, 92521; Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkalies (metabolism)</term>
<term>Carbohydrates (analysis)</term>
<term>Hot Temperature (MeSH)</term>
<term>Hydro-Lyases (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Panicum (metabolism)</term>
<term>Polysaccharides (metabolism)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcalis (métabolisme)</term>
<term>Glucides (analyse)</term>
<term>Hydro-lyases (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Panicum (métabolisme)</term>
<term>Polyosides (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbohydrates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkalies</term>
<term>Hydro-Lyases</term>
<term>Lignin</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glucides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcalis</term>
<term>Hydro-lyases</term>
<term>Lignine</term>
<term>Panicum</term>
<term>Polyosides</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hot Temperature</term>
<term>Hydrolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Hydrolyse</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1 wt% sodium hydroxide at 120°C for different reaction times. Following pretreatment, an H₂Cit⁻/HCit²⁻ buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72 h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23637060</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>09</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.</ArticleTitle>
<Pagination>
<MedlinePgn>2894-901</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.24951</ELocationID>
<Abstract>
<AbstractText>High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1 wt% sodium hydroxide at 120°C for different reaction times. Following pretreatment, an H₂Cit⁻/HCit²⁻ buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72 h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance.</AbstractText>
<CopyrightInformation>© 2013 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hongjia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, California, 92521; Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, California; BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xiadi</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Demartini</LastName>
<ForeName>Jaclyn D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000468">Alkalies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006836">Hydro-Lyases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000468" MajorTopicYN="N">Alkalies</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006836" MajorTopicYN="N">Hydro-Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">application</Keyword>
<Keyword MajorTopicYN="N">biomass recalcitrance</Keyword>
<Keyword MajorTopicYN="N">dilute alkali</Keyword>
<Keyword MajorTopicYN="N">high throughput pretreatment and co-hydrolysis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23637060</ArticleId>
<ArticleId IdType="doi">10.1002/bit.24951</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23637060
   |texte=   Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23637060" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020